Influences of water vapor on Cr(VI) reduction by gaseous hydrogen sulfide.

نویسندگان

  • Bin Hua
  • Baolin Deng
چکیده

In Situ Gaseous Reduction (ISGR) using hydrogen sulfide (H2S) is a technology developed for soil remediation by reductive immobilization of contaminants such as hexavalent chromium (Cr(VI)). Deploying the technology requires us to obtain a much-improved understanding of the interactions among the contaminants, H2S, and various soil components. In this study, Cr(VI) reduction by gaseous H2S was examined under various relative humidities (0-96.7%), concentrations of Cr(VI) (127-475 microg/g of solid), and H2S (0-800 ppm(v)) and by using Cr(VI) compounds with different solubilities. Glass beads with various average diameters (GA = 0.600 mm; GB = 0.212-0.300 mm; and GC = 0.106 mm) and silica (SA = 0.075-0.150 mm) were used as matrices to support K2CrO4, CaCrO4, PbCrO4, or BaCrO4, and reduction of these compounds by gaseous H2S was monitored by Cr(VI) analysis following extractions with distilled water or hot alkali solution. The results showed that Cr(VI) reduction relied on both the relative humidity of the gaseous stream and the size of particles onto which Cr(VI) was deposited. The relative humidity required for fast Cr(VI) reduction was 85% for GA, 61% for GB, 6% for SA, and 0% for GC. It was believed that a water film formed on the particle surfaces under appropriate humidity conditions, resulting in Cr(VI) compound dissolution and subsequent reduction. For nonsoluble Cr(VI) compounds including PbCrO4 and BaCrO4, no reduction by H2S was observed, even at high relative humidity (96.7%), due to lack of dissolution. This study indicated that ISGR treatment in soils requires appropriate moisture content in the subsurface or maintaining a suitable humidity in the treatment gas stream to maximize chromium immobilization.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen sulfide and organic compounds removal in municipal wastewater using ferrate (VI) and ultraviolet radiation

 Background: In this study, ferrate (VI) and ultraviolet (UV) radiation were employed to remove hydrogen sulfide from municipal wastewater resulting in a reduction in chemical oxygen demand (COD). Although ferrate (VI) and UV have been used individually for the removal of a few pollutants from urban and industrial wastewater, there exists no study to investigate the effectiveness of si...

متن کامل

Chromium(VI) reduction by hydrogen sulfide in aqueous media: stoichiometry and kinetics.

The objective of this work was to investigate the reaction stoichiometry, kinetics, and mechanism for Cr(VI) reduction by hydrogen sulfide in the aqueous phase. Batch experiments with excess [Cr(VI)] over [H2S]T indicated that the molar amount of sulfide required for the reduction of 1 M Cr(VI) was 1.5, suggesting the following stoichiometry: 2CrO4(2-) + 3H2S + 4H+-->2Cr(OH)3(s) + 3S(s) + 2H2O....

متن کامل

Kinetic study of hexavalent Cr(VI) reduction by hydrogen sulfide through goethite surface catalytic reaction

Hexavalent chromium reduction by sulfide in the presence of goethite was studied through several batch experiments. Under our specific experimental conditions including 20 μM of hexavalent chromium, 560–1117 μM of sulfide and 10.61– 37.13 m2/L of goethite at pH of 8.45 controlled by 0.1 M borate buffer, the obtained hexavalent chromium disappearance rate was –d[Cr(VI)]/dt = k[surface area of go...

متن کامل

Influence of soil minerals on chromium(VI) reduction by sulfide under anoxic conditions

The effects of soil minerals on chromate (CrVIO42-, noted as Cr(VI)) reduction by sulfide were investigated in the pH range of 7.67 to 9.07 under the anoxic condition. The examined minerals included montmorillonite (Swy-2), illite (IMt-2), kaolinite (KGa-2), aluminum oxide (gamma-Al2O3), titanium oxide (TiO2, P-25, primarily anatase), and silica (SiO2). Based on their effects on Cr(VI) reductio...

متن کامل

Effect of Water Gas Shift Reaction on the Non-Isothermal Reduction of Wustite Porous Pellet Using Syngas

Effect of water gas shift reaction (CO+H2O=CO2+H2) on wustite reduction has been investigated by a transient, non-isothermal mathematical model based on grain model. In this model, wustite porous pellet is reduced using Syngas, namely a mixture of hydrogen, carbon monoxide, carbon dioxide and water vapor. For this purpose, governing equations containing continuity equation of species and energy...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Environmental science & technology

دوره 37 20  شماره 

صفحات  -

تاریخ انتشار 2003